

Electron transport ...

... in π -stacked systems plays a vital role in biological systems, organic electronics, and materials science. In their Communication on page 5708 ff., M. Kiguchi, M. Fujita et al. report the successful formation of, and single-molecule conductance in, molecular junctions comprising discrete assemblies of π -stacked aromatic molecules enclosed within self-assembled coordination cages. The single-molecule π -stacks exhibit good conductance and show only a moderate loss with increasing transport length.

Inside Cover

Manabu Kiguchi,* Takuya Takahashi, Yuta Takahashi, Yoshihiro Yamauchi, Takashi Murase, Makoto Fujita,* Tomofumi Tada, and Satoshi Watanabe

Electron transport in π -stacked systems plays a vital role in biological systems, organic electronics, and materials science. In their Communication on page 5708 ff., M. Kiguchi, M. Fujita et al. report the successful formation of, and single-molecule conductance in, molecular junctions comprising discrete assemblies of π -stacked aromatic molecules enclosed within self-assembled coordination cages. The single-molecule π -stacks exhibit good conductance and show only a moderate loss with increasing transport length.

